Math 254-1 Exam 8 Solutions

1. Carefully define the linear algebra term "linear mapping". Give two examples on \mathbb{R}^2 .

A linear mapping is a function f from a vector space to another vector space, that satisfies f(u + v) = f(u) + f(v) and f(cu) = cf(u), for all vectors u, v and all scalars c. Many examples are possible, such as f(x, y) = (x, y), f(x, y) = (3x + y, 2x - 4y), f(x, y) = (0, 0), f(x, y) = (x, 0).

2. Give any inner product on \mathbb{R}^2 , OTHER than the dot product. Use your inner product to calculate $\langle u, v \rangle$ for $u = (1, 1)^T$, $v = (2, 3)^T$.

An inner product on \mathbb{R}^n can be built from any positive definite matrix A via $\langle u, v \rangle = u^T A v$. 2 × 2 matrices are positive definite if both diagonal entries are positive and the determinant is positive. For example, we could take $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$, in which case the inner product is $\langle (x_1, y_1), (x_2, y_2) \rangle_A = 2x_1x_2 + x_1y_2 + x_2y_1 + 3y_1y_2$. Or, we could take $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, in which case the inner product is $\langle (x_1, y_1), (x_2, y_2) \rangle_B = x_1x_2 + 2y_1y_2$. $\langle u, v \rangle$ depends on which inner product you specify; $\langle u, v \rangle_A = 4 + 3 + 2 + 9 = 18$, while $\langle u, v \rangle_B = 2 + 6 = 8$.

3. Find two different functions f, g on \mathbb{R} , with $f \circ f = g \circ g = 1_{\mathbb{R}}$.

 $f \circ f = 1_{\mathbb{R}}$ means that $f(f(x)) = 1_{\mathbb{R}}(x) = x$, for all $x \in \mathbb{R}$. There are two familiar functions that work: f(x) = x, g(x) = -x.

4. Consider all possible linear mappings from \mathbb{R}^4 to \mathbb{R}^2 . What are the possible nullities and ranks of these? Give an example function for each possible combination, and indicate which functions are one-to-one and which are onto.

The column space of a linear mapping is a subspace of the codomain (\mathbb{R}^2) , hence is of dimension 0, 1, or 2. The domain (\mathbb{R}^4) has dimension 4, hence by the dimension theorem the nullity must be 4, 3, or 2 (respectively). Since the nullity cannot be zero, NONE of these functions can be one-to-one. To be onto, the rank must be 2. f(x,y,z,w) = (x,w) has rank 2 (hence onto) and nullity 2. g(x,y,z,w) = (x,x) has rank 2 (hence onto) and nullity 2. g(x,y,z,w) = (x,x) has rank 1 and nullity 3. h(x,y,z,w) = (0,0) has rank 0 and nullity 4. We can also express these linear mappings as matrix multiplications by $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, and $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, respectively.

5. Consider the mapping $F : \mathbb{R}_2[t] \to \mathbb{R}^2$ given by F(p(t)) = (p(2), p(-1)). Calculate F(p(t)) for $p(t) = t^2 + 3t - 1$. Determine whether F is linear.

We have $F(t^2+3t-1) = (2^2+3\cdot 2-1, (-1)^2+3(-1)-1) = (9, -3)$. This is a function from one vector space to another, hence for it to be linear it must satisfy closure. Let p(t), q(t) be any polynomials in $\mathbb{R}_2[t]$; F((p+q)(t)) = ((p+q)(2), (p+q)(-1)) =(p(2) + q(2), p(-1) + q(-1)) = (p(2), p(-1)) + (q(2), q(-1)) = F(p(t)) + F(q(t)). Hence F is closed under vector addition. Let p(t) be any polynomial in the domain, and c be any scalar. We have F((cp)(t)) = ((cp)(2), (cp)(-1)) = (cp(2), cp(-1)) =c(p(2), p(-1)) = cF(p(t)). Hence F is closed under scalar multiplication. This means that F is linear.