Math 254-1 Exam 8 Solutions

1. Carefully define the linear algebra term "linear mapping". Give two examples on \mathbb{R}^{2}.

A linear mapping is a function f from a vector space to another vector space, that satisfies $f(u+v)=f(u)+f(v)$ and $f(c u)=c f(u)$, for all vectors u, v and all scalars c. Many examples are possible, such as $f(x, y)=(x, y), f(x, y)=(3 x+$ $y, 2 x-4 y), f(x, y)=(0,0), f(x, y)=(x, 0)$.
2. Give any inner product on \mathbb{R}^{2}, OTHER than the dot product. Use your inner product to calculate $\langle u, v\rangle$ for $u=(1,1)^{T}, v=(2,3)^{T}$.

An inner product on \mathbb{R}^{n} can be built from any positive definite matrix A via $\langle u, v\rangle=$ $u^{T} A v .2 \times 2$ matrices are positive definite if both diagonal entries are positive and the determinant is positive. For example, we could take $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$, in which case the inner product is $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle_{A}=2 x_{1} x_{2}+x_{1} y_{2}+x_{2} y_{1}+3 y_{1} y_{2}$. Or, we could take $B=\left(\begin{array}{cc}1 & 0 \\ 0 & 2\end{array}\right)$, in which case the inner product is $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle_{B}=x_{1} x_{2}+2 y_{1} y_{2}$. $\langle u, v\rangle$ depends on which inner product you specify; $\langle u, v\rangle_{A}=4+3+2+9=18$, while $\langle u, v\rangle_{B}=2+6=8$.
3. Find two different functions f, g on \mathbb{R}, with $f \circ f=g \circ g=1_{\mathbb{R}}$.
$f \circ f=1_{\mathbb{R}}$ means that $f(f(x))=1_{\mathbb{R}}(x)=x$, for all $x \in \mathbb{R}$. There are two familiar functions that work: $f(x)=x, g(x)=-x$.
4. Consider all possible linear mappings from \mathbb{R}^{4} to \mathbb{R}^{2}. What are the possible nullities and ranks of these? Give an example function for each possible combination, and indicate which functions are one-to-one and which are onto.

The columnspace of a linear mapping is a subspace of the codomain $\left(\mathbb{R}^{2}\right)$, hence is of dimension 0,1 , or 2 . The domain $\left(\mathbb{R}^{4}\right)$ has dimension 4 , hence by the dimension theorem the nullity must be 4,3 , or 2 (respectively). Since the nullity cannot be zero, NONE of these functions can be one-to-one. To be onto, the rank must be 2 . $f(x, y, z, w)=(x, w)$ has rank 2 (hence onto) and nullity 2. $g(x, y, z, w)=(x, x)$ has rank 1 and nullity 3 . $h(x, y, z, w)=(0,0)$ has rank 0 and nullity 4 . We can also express these linear mappings as matrix multiplications by $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0\end{array} 0\right.$ and ($\left.\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, respectively.
5. Consider the mapping $F: \mathbb{R}_{2}[t] \rightarrow \mathbb{R}^{2}$ given by $F(p(t))=(p(2), p(-1))$. Calculate $F(p(t))$ for $p(t)=t^{2}+3 t-1$. Determine whether F is linear.

We have $F\left(t^{2}+3 t-1\right)=\left(2^{2}+3 \cdot 2-1,(-1)^{2}+3(-1)-1\right)=(9,-3)$. This is a function from one vector space to another, hence for it to be linear it must satisfy closure. Let $p(t), q(t)$ be any polynomials in $\mathbb{R}_{2}[t] ; F((p+q)(t))=((p+q)(2),(p+q)(-1))=$ $(p(2)+q(2), p(-1)+q(-1))=(p(2), p(-1))+(q(2), q(-1))=F(p(t))+F(q(t))$. Hence F is closed under vector addition. Let $p(t)$ be any polynomial in the domain, and c be any scalar. We have $F((c p)(t))=((c p)(2),(c p)(-1))=(c p(2), c p(-1))=$ $c(p(2), p(-1))=c F(p(t))$. Hence F is closed under scalar multiplication. This means that F is linear.

